
TP 21 - Dosage conductimétrique d'une solution de sérum physiologique

DOC1: Le sérum physiologique

• Les dosettes de sérum physiologique, utilisées pour nettoyer les yeux et les nez des bébés contiennent une solution de chlorure de sodium (Na⁺(aq), Cl⁻(aq)) à 0,9 %

 $M(NaCl) = 58,5 \text{ g.mol}^{-1}$; densité de la solution d ≈ 1

DOC2: Principe du dosage par précipitation

• Une solution ionique de chlorure de sodium (Na⁺(aq), Cl⁻(aq)) peut réagir avec une solution de nitrate d'argent (Ag+_(aq); NO₃-(aq)) en donnant un précipité blanc de chlorure d'argent AgCl (s)

La solution commerciale S de sérum physiologique est trop concentrée ; il faut la diluer 5 fois. On obtient alors une solution diluée S' en chlorure de sodium.

On dose 20,0 mL de la solution S' par une solution de nitrate d'argent ; on note les variations de la conductivité lors de la réaction, après chaque ajout mL par mL de la solution de nitrate d'argent dans le bécher.

DOC3 : Conductivité d'une solution ionique

• La conductivité d'une solution ionique est une grandeur qui montre la capacité de la solution à conduire le courant électrique. Cette conductivité dépend de différents facteurs ; elle dépend notamment de la nature et de la concentration des ions dans la solution

Conductivités molaires ioniques λ (en S.m².mol¹) de quelques ions :

Cl-	Ag ⁺	NO ₃ -	Na⁺
7,6.10 ⁻³	6,2.10 ⁻³	7,1.10 ⁻³	5,0.10 ⁻³

• Lors d'un dosage conductimètrique, le coefficient directeur des droites est proportionnel à :

$$a = \sum \lambda_{\text{ions apparaissant}} - \sum \lambda_{\text{ions disparaissant}}$$

Si a > 0: droite croissante (σ augmente); si a < 0: droite décroissante (σ diminue)

• Pour travailler à volume pratiquement constant, on utilise au moins 200 mL d'eau distillée que l'on versera dans un grand bécher

DOC4: Matériel et produits mis à disposition

- Une pipette jaugée de 20 mL avec son pipeteur
- un ensemble de béchers
- une petite pipette en plastique
- une fiole jaugée de 25 mL
- de l'eau distillée ; une dosette de sérum physiologique
- une solution de nitrate d'argent de concentration [Ag+] = 5,0.10-2 mol.L-1
- un conductimètre, une burette graduée, un agitateur magnétique et un turbulent

DOC5: La précision du dosage

Le résultat des concentrations seront donnés sous la forme :

 $C = (C \pm UC) \text{ mol.L}^{-1} \text{ avec } UC = 2.10^{-3} \text{ mol.L}^{-1}$

 $C_m = (C_m \pm UC_m) g.L^{-1} avec UC_m = M_{NaCl} \times UC$

Et maintenant à vous de réaliser le protocole expérimental permettant de répondre à l'objectif du TP

Et à vos compte-rendus (avec tout ce qu'il faut dedans !!)

Coups de pouce : penser à répondre aux questions suivantes :

- Quelle est la concentration de la solution de sérum physiologique, d'après les indications de l'étiquette ?
- Quelle est l'équation de la transformation chimique qui se produit lors de l'expérience ?
- Comment peut-on interpréter qualitativement l'allure de la courbe obtenue ?
- Que représente l'équivalence d'un dosage ? Comment repère-t-on l'équivalence sur la courbe ?
- Quelles sont les concentrations molaire et massique de la solution dosée de sérum physiologique ?
- Quel est l'écart relatif entre la valeur trouvée expérimentalement et la valeur indiquée sur l'étiquette ?